A groupoid approach to quantization

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Groupoid Approach to Quantization

Many interesting C∗-algebras can be viewed as quantizations of Poisson manifolds. I propose that a Poisson manifold may be quantized by a twisted polarized convolution C∗-algebra of a symplectic groupoid. Toward this end, I define polarizations for Lie groupoids and sketch the construction of this algebra. A large number of examples show that this idea unifies previous geometric constructions, ...

متن کامل

Quantization and the Tangent Groupoid *

This is a survey of the relationship between C *-algebraic deformation quan-tization and the tangent groupoid in noncommutative geometry, emphasizing the role of index theory. We first explain how C *-algebraic versions of deformation quantization are related to the bivariant E-theory of Connes and Higson. With this background, we review how Weyl–Moyal quantization may be described using the ta...

متن کامل

Lie Groupoid C∗-Algebras and Weyl Quantization

A strict quantization of a Poisson manifold P on a subset I ⊆ R containing 0 as an accumulation point is defined as a continuous field of C∗-algebras {Ah̄}h̄∈I , with A0 = C0(P ), a dense subalgebra Ã0 of C0(P ) on which the Poisson bracket is defined, and a set of continuous cross-sections {Q(f )} f∈Ã0 for which Q0(f ) = f . Here Qh̄(f ∗) = Qh̄(f )∗ for all h̄ ∈ I , whereas for h̄ → 0 one requires t...

متن کامل

GROUPOID ASSOCIATED TO A SMOOTH MANIFOLD

‎In this paper‎, ‎we introduce the structure of a groupoid associated to a vector field‎ ‎on a smooth manifold‎. ‎We show that in the case of the $1$-dimensional manifolds‎, ‎our‎ ‎groupoid has a‎ ‎smooth structure such that makes it into a Lie groupoid‎. ‎Using this approach‎, ‎we associated to‎ ‎every vector field an equivalence‎ ‎relation on the Lie algebra of all vector fields on the smooth...

متن کامل

A Groupoid Approach to Discrete Inverse Semigroup Algebras

Let K be a commutative ring with unit and S an inverse semigroup. We show that the semigroup algebra KS can be described as a convolution algebra of functions on the universal étale groupoid associated to S by Paterson. This result is a simultaneous generalization of the author’s earlier work on finite inverse semigroups and Paterson’s theorem for the universal C-algebra. It provides a convenie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symplectic Geometry

سال: 2008

ISSN: 1527-5256,1540-2347

DOI: 10.4310/jsg.2008.v6.n1.a4